Todays Word: “gazette”

Word: gazette

PRONUNCIATION:

(guh-ZET)

MEANING:

noun:
1. A newspaper (now mostly used in the name of newspapers, for example, the Montreal Gazette).
2. An official journal of an organization, for example, a government journal listing appointment, promotions, etc.

verb tr.:
1. To announce in an official journal.
2. To publish the appointment of someone in an official journal.

ETYMOLOGY:

From French, from Italian gazzetta (news sheet), from Venetian gazeta (a small coin), diminutive of gaza (magpie). The news sheet may have been named so because it sold for a gazeta or its content was compared to the chattering of magpies. The coin may have been named from its marking. Earliest documented use: 1607.

USAGE:

“The printing was completed last night and copies of the gazettes will be sent to the Parliament Secretariat this morning.”
Oath in a Day or Two; The Daily Star (Dhaka, Bangladesh); Jan 2, 2009.

Explore “gazette” in the Visual Thesaurus.

 

Daily Thirukural: Kural #14

Today we are going to see the fourth kural from “The Blessing of Rain”

திருக்குறள்

Thirukkural / Holy Kural

Chapter 2.

அறத்துப்பால்

1.1 பாயிரவியல்

1.1.2 வான்சிறப்பு

1.1.2 The Blessing of Rain

14 – ஏரின் உழாஅர் உழவர் புயல்என்னும்வாரி வளங்குன்றிக் கால்.விளக்கம்:
மழை என்னும் வருவாய் வளம் குன்றிவிட்டால், உழவுத் தொழில் குன்றி விடும்.English:
14-If clouds their wealth of waters fail on earth to pour,
The ploughers plough with oxen’s sturdy team no more.

Explanation:

If the abundance of wealth imparting rain diminish, the labour of the plough must cease.

Alternative for NASA’s Spirit Mars rover

Hopes for reviving NASA’s Spirit Mars rover dimmed further with passage last week of the point at which the rover’s locale received its maximum sunshine for the Martian year.The rover team has tried to contact Spirit for months with strategies based on the possibility that increasing energy availability might wake the rover from hibernation. The team has now switched to communication strategies designed to address more than one problem on the rover. If no signal is heard from Spirit in the next month or two, the team at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., will shift to single-rover operations, continuing to operate Spirit’s active twin, Opportunity.

An artist’s concept portrays a NASA Mars Exploration Rover on the surface of Mars. (Credit: NASA/JPL/Cornell University)

“The commands we are sending starting this week should work in a multiple-fault scenario where Spirit’s main transmitter is no longer working and the mission clock has lost track of time or drifted significantly,” said JPL’s John Callas, project manager for Spirit and Opportunity.

Spirit landed on Mars Jan. 4, 2004 Universal Time (Jan. 3, Pacific Time) for a mission designed to last for three months. After accomplishing its prime-mission goals, Spirit worked for more than five years in bonus-time extended missions.

Spirit has not communicated since March 22, 2010. Power output from its solar array had been waning prior to that, and the rover had been expected to go into a low-power hibernation mode. With drive motors on two of its six wheels no longer working, Spirit had been unable in preceding months to maneuver much in its sand-trap location. The rover could not get to a favorable tilt for its solar panels as Martian winter approached.

During the Martian winter with most heaters turned off, Spirit experienced colder internal temperatures than in any of its three previous winters on Mars. The cold could have damaged any of several electronic components that, if damaged, would prevent reestablishing communication with Spirit.

However, attempts to regain contact have continued for more than eight months in the possibility that the seasonal increase in solar energy available at Spirit’s location would revive the rover. NASA’s Deep Space Network of antennas in California, Spain and Australia has been listening for Spirit daily. The rover team has also sent commands to elicit a response from the rover even if the rover has lost track of time, or if its receiver has degraded in frequency response.

The available solar energy at Spirit’s site was estimated to peak on March 10. Revised commanding began March 15, including instructions for the rover to be receptive over UHF relay to hailing from the Mars orbiters for extended periods of time and to use a backup transmitter on the rover.

Spirit and Opportunity both have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life. Opportunity landed three weeks after Spirit.

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA’s Science Mission Directorate, Washington.

 

Ultra-Sensitive Sensor Technology

Princeton researchers have invented an extremely sensitive sensor that opens up new ways to detect a wide range of substances, from tell-tale signs of cancer to hidden explosives.

Micrograph of a sensor developed at Princeton for sensing Raman scattering. Pillars support metal components that gather light and amplify Raman signals, wavelengths of light that can be used to identify a substance. (Credit: Stephen Y. Chou)

The sensor, which is the most sensitive of its kind to date, relies on a completely new architecture and fabrication technique developed by the Princeton researchers. The device boosts faint signals generated by the scattering of laser light from a material placed on it, allowing the identification of various substances based on the color of light they reflect. The sample could be as small as a single molecule.

The technology is a major advance in a decades-long search to identify materials using Raman scattering, a phenomena discovered in the 1920s by an Indian physicist, Chandrasekhara Raman, where light reflecting off an object carries a signature of its molecular composition and structure.

“Raman scattering has enormous potential in biological and chemical sensing, and could have many applications in industry, medicine, the military and other fields,” said Stephen Y. Chou, the professor of electrical engineering who led the research team. “But current Raman sensors are so weak that their use has been very limited outside of research. We’ve developed a way to significantly enhance the signal over the entire sensor and that could change the landscape of how Raman scattering can be used.”

Chou and his collaborators, electrical engineering graduate students, Wen-Di Li and Fei Ding, and post-doctoral fellow, Jonathan Hu, published a paper on their innovation in February in the journal Optics Express. The research was funded by the Defense Advance Research Projects Agency.

In Raman scattering, a beam of pure one-color light is focused on a target, but the reflected light from the object contains two extra colors of light. The frequency of these extra colors are unique to the molecular make-up of the substance, providing a potentially powerful method to determine the identity of the substance, analogous to the way a finger print or DNA signature helps identify a person.

Since Raman first discovered the phenomena — a breakthrough that earned him Nobel Prize — engineers have dreamed of using it in everyday devices to identify the molecular composition and structures of substances, but for many materials the strength of the extra colors of reflected light was too weak to be seen even with the most sophisticated laboratory equipment.

Researchers discovered in the 1970s that the Raman signals were much stronger if the substance to be identified is placed on a rough metal surface or tiny particles of gold or silver. The technique, known as surface enhanced Raman scattering (SERS), showed great promise, but even after four decades of research has proven difficult to put to practical use. The strong signals appeared only at a few random points on the sensor surface, making it difficult to predict where to measure the signal and resulting in a weak overall signal for such a sensor.

Abandoning the previous methods for designing and manufacturing the sensors, Chou and his colleagues developed a completely new SERS architecture: a chip studded with uniform rows of tiny pillars made of metals and insulators.

One secret of the Chou team’s design is that their pillar arrays are fundamentally different from those explored by other researchers. Their structure has two key components: a cavity formed by metal on the top and at the base of each pillar; and metal particles of about 20 nanometers in diameter, known as plasmonic nanodots, on the pillar wall, with small gaps of about 2 nanometers between the metal components.

The small particles and gaps significantly boost the Raman signal. The cavities serve as antennae, trapping light from the laser so it passes the plasmonic nanodots multiple times to generate the Raman signal rather than only once. The cavities also enhance the outgoing Raman signal.

The Chou’s team named their new sensor “disk-coupled dots-on-pillar antenna-array” or D2PA, for short.

So far, the chip is a billion times (109) more sensitive than was possible without SERS boosting of Raman signals and the sensor is uniformly sensitive, making it more reliable for use in sensing devices. Such sensitivity is several orders of magnitude higher than the previously reported.

Already, researchers at the U.S. Naval Research Laboratory are experimenting with a less sensitive chip to explore whether the military could use the technology pioneered at Princeton for detecting chemicals, biological agents and explosives.

In addition to being far more sensitive than its predecessors, the Princeton chip can be manufactured inexpensively at large sizes and in large quantities. This is due to the easy-to-build nature of the sensor and a new combination of two powerful nanofabrication technologies: nanoimprint, a method that allows tiny structures to be produced in cookie-cutter fashion; and self-assembly, a technique where tiny particles form on their own. Chou’s team has produced these sensors on 4-inch wafers (the basis of electronic chips) and can scale the fabrication to much larger wafer size.

“This is a very powerful method to identify molecules,” Chou said. “The combination of a sensor that enhances signals far beyond what was previously possible, that’s uniform in its sensitivity and that’s easy to mass produce could change the landscape of sensor technology and what’s possible with sensing.”